

Revised Methodology

Results 0000000 Summary 00

Strengthening the Bridge Between Chiral Lagrangians and QCD Sum-Rules

Jason Ho

Dordt University

QCD2025 Montpellier, France

Jason Ho

Strengthening the Bridge Between Chiral Lagrangians and QCD Sum-Rules

1/31

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary 00

Outline

The Scalar Mesons

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results

Summary

2/31

Revised Methodology

Results 0000000 Summary 00

The Scalar Mesons

- ► Understanding the light scalar sector of QCD has long been a challenging problem
 - e.g., mixing of quark and glue components, other complex nonperturbative dynamics
- ► The experimental data in this low-energy region has also proved challenging
 - *e.g.*, wide, overlapping resonances, low resolution
- Chiral Lagrangian models (LSM, NLSM) have been valuable tools for understanding this sector.

Revised Methodolog

Results 0000000 Summary 00

Bridging Chiral Lagrangians and QCD Sum-Rules

- Chiral Lagrangians consider effective hadronic fields
 - Chiral Lagrangians have model parameters fixed by low-energy experimental data.
 - Generalized linear sigma model (GLSM)
- QCD Sum-rules consider hadronic operators built out of constituent quark fields.
 - Quark operators directly probe hadronic substructure.
 - Gaussian sum-rules weigh different energy regimes equally.
- Can we connect these methodologies to complement one another?

Amir H. Fariborz, A. Pokraka, T.G. Steele. Mod. Phys. Lett. A31 (2016) 1650023. arXiv:1505.05553

Amir H. Fariborz, **JH**, T.G. Steele. Mod. Phys. Lett. A35 (2020) 2050173. arXiv:1911.04945

Revised Methodology

Results 0000000 Summary 00

Early Methodology

Early Methodology

- 1. Model two-quark $(\bar{q}q)$ and four-quark $(\bar{q}q\bar{q}q)$ chiral nonets with GLSM
- 2. Relate physical chiral Lagrangian fields to QCD composite operators via scale factor matrix *I* and chiral Lagrangian rotation matrix *L*
- 3. Impose off-diagonal condition on QCD correlator matrix.
- 4. Model hadronic side of QCDSR with Breit-Wigner resonance + continuum model with experimental inputs.
- 5. Solve for scale factors Λ and Λ' and determine energy-dependent behavior.

Revised Methodolog

Results 0000000 Summary 00

Early Methodology

Early Methodology

Chiral Lagrangian fields describing quark-antiquark scalar nonet M and four-quark nonets M'

$$M = S + i\phi$$
, $M' = S' + i\phi'$

which have different transformation properties under $U_A(1)$,

$$M o e^{2i
u} M, \qquad M' o e^{-4i
u} M$$

The scalar nonets $\{S, S'\}$ are given by

$$S = egin{pmatrix} S_1 & a_0^+ & \kappa^+ \ a_0^- & S_2^2 & \kappa^0 \ \kappa^- & ar\kappa^0 & S_3^3 \end{pmatrix}, \; S' = egin{pmatrix} S'_1 & a'_0^+ & \kappa'^+ \ a'_0^- & S'_2^2 & \kappa'^0 \ \kappa'^- & ar\kappa'^0 & S'_3^3 \end{pmatrix}$$

6/31

Jason Ho

Revised Methodology

Results 0000000 Summary 00

Early Methodology

Early Methodology

We can define these nonets in terms of quark-level operators as well

$$M_{
m QCD} = S_{
m QCD} + i\phi_{
m QCD}, \ M_{
m QCD}' = S_{
m QCD}' + i\phi_{
m QCD}'$$

where the scalar nonets $\{S_{\rm QCD},S_{\rm QCD}'\}$ are given by composite operators instead,

$$S_{\rm QCD} = \begin{pmatrix} J_1^{11} & J_1^{a_0^+} & J_1^{\kappa^+} \\ J_1^{a_0^-} & J_1^{22} & J_1^{\kappa^0} \\ J_1^{\kappa^-} & J_1^{\bar{\kappa}^0} & J_1^{33} \end{pmatrix}, \ S_{\rm QCD}' = \begin{pmatrix} J_2^{11} & J_2^{a'_0^-} & J_2^{\kappa'^+} \\ J_2^{a'_0^-} & J_2^{22} & J_2^{\kappa'^0} \\ J_2^{\kappa'^-} & J_2^{\bar{\kappa}^0} & J_2^{33} \end{pmatrix}$$

7/31

Revised Methodology

Results 0000000 Summary 00

Early Methodology

Early Methodology

We relate the physical mesonic states to the chiral Lagrangian operators and the composite quark operators $J^{\rm QCD}$ through a scale factor matrix I and a rotation matrix L

Isodoublet
$$(I = 1/2, J = 0)$$
: $\begin{pmatrix} K_0^*(700) \\ K_0^*(1430) \end{pmatrix} = L_{\kappa}^{-1} \begin{pmatrix} S_2^3 \\ (S')_2^3 \end{pmatrix} = L_{\kappa}^{-1} I_{\kappa} J_{\kappa}^{\text{QCD}}$

Isotriplet
$$(I = 1, J = 0)$$
: $\begin{pmatrix} a_0^0(980) \\ a_0^0(1450) \end{pmatrix} = L_a^{-1} \begin{pmatrix} \frac{S_1^1 - S_2^2}{\sqrt{2}} \\ \frac{S_1'^1 - S_2'^2}{\sqrt{2}} \end{pmatrix} = L_a^{-1} I_a J_a^{\text{QCD}}$

8/31

Jason Ho

Revised Methodology O Results 0000000 Summary 00

Early Methodology

Early Methodology

We relate the physical mesonic states to the chiral Lagrangian operators and the composite quark operators $J^{\rm QCD}$ through a scale factor matrix I and a rotation matrix L

$$L_{\kappa}^{-1} = \begin{pmatrix} \cos \theta_{\kappa} & -\sin \theta_{\kappa} \\ \sin \theta_{\kappa} & \cos \theta_{\kappa} \end{pmatrix}$$

$$L_a^{-1} = \begin{pmatrix} \cos \theta_a & -\sin \theta_a \\ \sin \theta_a & \cos \theta_a \end{pmatrix} , \ I_a = I_\kappa = \begin{pmatrix} -m_q & 0 \\ 0 & \frac{1}{\Lambda^{15}} \end{pmatrix}$$

9/31

Jason Ho

Revised Methodology

Results 0000000 Summary 00

Early Methodology

QCDSR Limitations

- For resonances involving complex mixing or involving nonconventional substructure, QCD operators should reflect the mixed content
- Usually the hadronic side of QCDSR is modeled with a resonance + continuum model, typically using a single-narrow resonance (or Breit-Wigner)

For a full multiplet analysis, it will be necessary to account for wide resonances and mixing.

Revised Methodology

Results 2000000 Summary 00

Revised Methodology

- 1. Model two-quark $(\bar{q}q)$ and four-quark $(\bar{q}q\bar{q}q)$ chiral nonets with GLSM
- 2. Relate physical chiral Lagrangian fields to QCD composite operators via scale factor matrix I_{κ} and chiral Lagrangian rotation matrix L_{κ}
- 3. Impose off-diagonal condition on QCD correlator matrix.
- 4. Model hadronic side of QCDSR with modified BW informed by background-resonance interference approximation.
- 5. Solve for scale factors Λ and Λ' and determine energy-dependent behavior. Compare predictions for various resonance models.

Amir H. Fariborz, **JH**, T.G. Steele. Phys. Rev. D 111, 094023. arXiv:2501.12601

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary 00

Resonance Modeling: Isodoublets

Background-Resonance Interference Approximation

Previous work with GLSMs have demonstrated unitarized πK scattering amplitudes can be approximated by a two pole + background model

$$T_0^{1/2}(s) = rac{
ho(s)}{2} \left[\mathcal{C}_\kappa + \sum_{i=1}^2 rac{\mathcal{A}_{\kappa_i}\left(2m_{\kappa_i} \Gamma_{\kappa_i}
ight)}{
ho_{0i}(m_{\kappa_i}^2 - s) - im_{\kappa_i} \Gamma_{\kappa_i}
ho_{0i}}
ight],$$

where $ho(s) = rac{q}{8\pi\sqrt{s}} = rac{\sqrt{[s-(m_\pi+m_K)^2][s-(m_\pi-m_K)^2]}}{16\pi s}$

The background-resonance interference approximation extends this model by including complex fitting coefficients {C_κ, A_{κi}}

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

ŏooo

Results 0000000 Summary 00

Resonance Modeling: Isodoublets

Background-Resonance Interference Approximation

Additionally, we can modify the fitting model to unitarize each complex-weighted resonance contribution to the amplitude

$$T_0^{1/2}(s) = rac{
ho(s)}{2} \left[C_\kappa + \sum_{i=1}^2 rac{A_{\kappa_i} (2m_{\kappa_i} \Gamma_{\kappa_i})}{
ho_{0i}(m_{\kappa_i}^2 - s) - im_{\kappa_i} \Gamma_{\kappa_i}
ho(s))}
ight],$$

adding an energy-dependent imaginary part.

• Models are fit to πK scattering data¹

¹D. Aston, et al., Nucl. Phys. B 296, 493 (1988)

Revised Methodology

Results 0000000 Summary 00

Resonance Modeling: Isodoublets

 Fits to data is good for 	Parameter	Model 1	Model 2
both models, with similar fitting	A_{κ_1}	-0.0560 - i 0.144	-0.0559 - i 0.150
coefficients.	A_{κ_2}	0.385 + i 0.899	0.382 + i0.900
• $\Delta \delta_0^{1/2}$ is a measure of	C_{κ}	47.853 + <i>i</i> 33.116	46.861 + <i>i</i> 33.386
phase shift.	$\Delta \delta_0^{1/2}$	0.026	0.028

$$\Delta \delta_0^{1/2} = \frac{1}{N} \sum_{k}^{N} \frac{\left| \delta_0^{1/2, \text{Theo.}}(s_k) - \delta_0^{1/2, \text{Exp.}}(s_k) \right|}{\delta_0^{1/2, \text{Exp.}}(s_k)}$$

14/31

Jason Ho

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology ○ ○ ○ ○ ○ ○ ○ ○

Results 0000000 Summary 00

Resonance Modeling: Isodoublets

Modeling πK scattering with

.

$$\Gamma_0^{1/2}(s) = rac{
ho(s)}{2} \left[C_\kappa + \sum_{i=1}^2 rac{A_{\kappa_i} \left(2m_{\kappa_i} \Gamma_{\kappa_i}
ight)}{
ho_{0i} (m_{\kappa_i}^2 - s) - i m_{\kappa_i} \Gamma_{\kappa_i}
ho_{0i}}
ight]$$

ason Ho

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

စ္ဂိစ္ဂစ္ဂစ္

Results 0000000 Summary 00

Resonance Modeling: Isodoublets

Modeling πK scattering with

$$T_0^{1/2}(s) = rac{
ho(s)}{2} \left[\mathcal{C}_\kappa + \sum_{i=1}^2 rac{\mathcal{A}_{\kappa_i}\left(2m_{\kappa_i}\Gamma_{\kappa_i}
ight)}{
ho_{0i}(m_{\kappa_i}^2-s) - im_{\kappa_i}\Gamma_{\kappa_i}
ho(s))}
ight]$$

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary 00

Resonance Modeling: Isotriplets

Background-Resonance Interference Approximation

► For the isotriplets, we apply two similar models

$$T_0^1(s) = \frac{\rho(s)}{2} \left[C_a + \sum_{i=1}^2 \frac{A_{a_i} \left(2m_{a_i} \Gamma_{a_i} \right)}{\rho_{0i} (m_{a_i}^2 - s) - im_{a_i} \Gamma_{a_i} \rho_{0i}} \right],$$
$$T_0^1(s) = \frac{\rho(s)}{2} \left[C_a + \sum_{i=1}^2 \frac{A_{a_i} \left(2m_{a_i} \Gamma_{a_i} \right)}{\rho_{0i} (m_{a_i}^2 - s) - im_{a_i} \Gamma_{a_i} \rho(s))} \right],$$
$$\rho(s) = \frac{q}{8\pi\sqrt{s}} = \frac{\sqrt{[s - (m_\pi + m_\eta)^2][s - (m_\pi - m_\eta)^2]}}{16\pi s} \text{ and } \{C_a, A_{a_i}\} \in \mathbb{C}$$

► Instead of fitting to experimental $\pi\eta$ scattering data, we fit to model-generated data² ²D. Black, A.H. Fariborz and J. Schechter, Phys. Rev. D 61, 074030 (2000)

Jason Ho

where

Revised Methodology

Summary 00

Resonance Modeling: Isotriplets

	Et al.	Parameter	Model 1	Model 2
•	model-generated data	A_{a_1}	0.864 — <i>i</i> 0.298	0.872 — <i>i</i> 0.288
is similar for both	is similar for both	A_{a_2}	0.726 <i>- i</i> 0.641	0.710 <i>- i</i> 0.635
	ntting models.	Ca	-42.7 + i17.6	-43.0 + <i>i</i> 19.9

18/31

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary 00

Resonance Modeling: Isotriplets

Modeling $\pi\eta$ scattering with

$$T_0^1(s) = \frac{\rho(s)}{2} \left[C_a + \sum_{i=1}^2 \frac{A_{a_i} (2m_{a_i} \Gamma_{a_i})}{\rho_{0i} (m_{a_i}^2 - s) - im_{a_i} \Gamma_{a_i} \rho_{0i}} \right],$$

19/31

Jason Ho

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology ○ ○ ○ ○ ○ ○ ○ ○

Results 0000000 Summary 00

Resonance Modeling: Isotriplets

Modeling $\pi\eta$ scattering with

$$T_0^1(s) = rac{
ho(s)}{2} \left[C_a + \sum_{i=1}^2 rac{A_{a_i} (2m_{a_i} \Gamma_{a_i})}{
ho_{0i} (m_{a_i}^2 - s) - i m_{a_i} \Gamma_{a_i}
ho(s))}
ight],$$

Jason Ho

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary 00

Resonance Modeling and QCDSR

Resonance Models

► QCD Gaussian Sum-rules:

$$egin{aligned} \mathcal{G}^{ ext{QCD}}\left(\hat{s}, au,s_{0}
ight) =& G^{ ext{res}}\left(\hat{s}, au
ight) \ =& rac{1}{\sqrt{4\pi au}}\int\limits_{t_{0}}^{\infty}\!\!\!\!dt\exp\left[rac{-(\hat{s}-t)^{2}}{4 au}
ight]\, arrho ^{ ext{res}}(t) \end{aligned}$$

where
$$\mathcal{G}^{\text{QCD}}(\hat{s}, \tau, s_0) = G^{\text{QCD}}(\hat{s}, \tau) - \frac{1}{\sqrt{4\pi\tau}} \int_{s_0}^{\infty} dt \exp\left[\frac{-(\hat{s}-t)^2}{4\tau}\right] \frac{1}{\pi} \text{Im} \Pi^{\text{QCD}}(t)$$
 represents the QCD description

• We use a resonance + continuum model for the hadronic side of QCDSR where $\rho^{res}(t)$ represents fitted input of experimental scattering data.

Revised Methodology

00000

Results 0000000 Summary 00

Resonance Modeling and QCDSR

Model Name	Abbreviation	$arrho_i^{ m res}(t)$
Narrow Resonance	NR	$\delta\left(t-m_{i}^{2} ight)$
Propagator Resonance	PROP	$\frac{m_i\Gamma_i}{\left(t-m_i^2\right)^2+m_i^2\Gamma_i^2}$
Distorted Breit-Wigner $(\xi_i=0)$	DBW	$rac{ ho(t)m_i\Gamma_i}{ig(t-m_i^2ig)^2+m_i^2\Gamma_i^2}$
Generalized Breit-Wigner $(\xi_i=0)$	GBW	$rac{m_i G_i(t)^2}{ig(t-m_i^2ig)^2+m_i^2 G_i(t)^2}$
Extended Distorted Breit-Wigner	EDBW	$rac{ ho(t)m_i\Gamma_i}{ig(t-m_i^2ig)^2+m_i^2\Gamma_i^2}+\xi_irac{ ho(t)ig(m_i^2-tig)}{ig(t-m_i^2ig)^2+m_i^2\Gamma_i^2}$
Extended Generalized Breit-Wigner	EGBW	$\frac{m_i G_i(t)^2}{\left(t-m_i^2\right)^2+m_i^2 G_i(t)^2}+\xi_j \frac{G_i(t) \left(m_i^2-t\right)}{\left(t-m_i^2\right)^2+m_i^2 G_i(t)^2}$

Models are arranged in order of increasing sophistication and increasing width effects $(G_i(t) = \rho(t)\Gamma_i/\rho_{0i})$.

Revised Methodology O

Summary 00

Results

- Scale factors {Λ, Λ'} are extracted for each resonance model over an energy scale 0 < ŝ < 6 GeV². Previously used value of GSR parameter τ = 3 GeV⁴ used in analysis.
- In order to compare with previous work, each resonance is normalized to the "propagator" model (PROP).
- ► We define ∆ as a measure of universality comparing how the individually determined scale-factors compare within each nonet:

$$\Delta = \left| \frac{\Lambda_{\kappa} - \Lambda_{a}}{\Lambda_{\kappa} + \Lambda_{a}} \right| + \left| \frac{\Lambda_{\kappa}' - \Lambda_{a}'}{\Lambda_{\kappa}' + \Lambda_{a}'} \right| \,.$$

Model	Channel	$s_0^{(1)}$	$s_0^{(2)}$	٨	٨′	$\chi^2_{\Lambda} imes 10^6$	$\chi^2_{\Lambda'} imes 10^6$	Δ
PROP -	K_0^*	2.76	1.79	0.1256	0.2798	17.9	19.6	0.0586
	a ₀	2.40	2.13	0.1169	0.2928	27.1	6.83	
DBW	κ_0^*	2.90	2.11	0.1284	0.2973	14.4	21.0	0.0397
	<i>a</i> 0	2.49	2.20	0.1191	0.2960	27.0	7.33	
CBW/	κ_0^*	2.97	2.30	0.1297	0.3070	15.6	28.5	0.0530
GDVV	a ₀	2.53	2.24	0.1201	0.2978	29.1	8.26	0.0559

Summary 00

Model	Channel	$s_0^{(1)}$	$s_0^{(2)}$	٨	٨′	$\chi^2_{\Lambda} imes 10^6$	$\chi^2_{\Lambda'} imes 10^6$	Δ
PROP	K_0^*	2.76	1.79	0.1256	0.2798	17.9	19.6	0.0586
	<i>a</i> 0	2.40	2.13	0.1169	0.2928	27.1	6.83	
EDBW	κ_0^*	3.20	2.34	0.1339	0.3091	6.10	14.2	0.0182
	<i>a</i> 0	3.08	2.65	0.1318	0.3156	13.3	6.56	0.0102
EGBW	K_0^*	3.31	2.49	0.1358	0.3163	5.28	18.3	0.0110
	a ₀	3.14	2.69	0.1330	0.3173	13.2	7.04	0.0119

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 000●000 Summary 00

GSRs can distinguish between different resonance models.

Bridging Chiral Lagrangians and QCD Sum-Rules 0 000000 Revised Methodology

Results 0000000 Summary 00

GSRs can distinguish between different resonance models.

Revised Methodology

Results 0000000 Summary 00

Universality increases as model complexity increases.

Model	$\chi^2_{\Lambda} imes 10^6$	$\chi^2_{\Lambda'} imes 10^6$	Δ
EGBW	5.28	18.3	0.0119
EDBW	6.10	14.2	0.0182
GBW	15.6	28.5	0.0539
DBW	14.4	21.0	0.0397

28/31

Jason Ho

Revised Methodology

Results 000000● Summary 00

Universality increases as model complexity increases.

Model	$\chi^2_{\Lambda} imes 10^6$	$\chi^2_{\Lambda'} imes 10^6$	Δ
EGBW	13.2	7.04	0.0119
EDBW	13.3	6.56	0.0182
GBW	29.1	8.26	0.0539
DBW	27.0	7.33	0.0397

29/31

Jason Ho

Revised Methodology

Results 0000000 Summary ●O

Summary

- We are continuing to develop a methodology relating chiral Lagrangian and QCD sum-rule methodologies.
- Revised Gaussian QCD sum-rule methodology reproduces previous work and opens the possibility of investigating more complex systems.
- New resonance models provide input complex low-energy features and show an improvement in universality.
- Future work includes extension to higher-dimensional isospin sectors, including mixing with glueballs.

Amir H. Fariborz, **JH**, T.G. Steele. Phys. Rev. D 111, 094023. arXiv:2501.12601

30/31

Bridging Chiral Lagrangians and QCD Sum-Rules

Revised Methodology

Results 0000000 Summary O●

Thank You!

31/31

Jason Ho

$$\mathcal{G}^{ ext{QCD}}\left(\hat{s}, au,s_{0}
ight)=G^{ ext{QCD}}\left(\hat{s}, au
ight)-rac{1}{\sqrt{4\pi au}}\int\limits_{s_{0}}^{\infty}\!\!dt\exp\left[rac{-\left(\hat{s}-t
ight)^{2}}{4 au}
ight]rac{1}{\pi} ext{Im}\Pi^{ ext{QCD}}(t)$$

$$\begin{split} \mathcal{G}_{(\kappa)11}^{\text{QCD}}\left(\hat{s},\tau,s_{0}\right) &= \frac{3}{8\pi^{2}} \int_{0}^{s_{0}} t \, dt \left[\left(1 + \frac{17}{3} \frac{\alpha_{s}}{\pi} \right) - 2\frac{\alpha_{s}}{\pi} \log\left(\frac{t}{\sqrt{\tau}}\right) \right] W\left(t,\hat{s},\tau\right) \\ &+ \frac{\pi n_{c} \rho_{c}^{2}}{m_{s}^{*} m_{q}^{*}} \int_{0}^{s_{0}} t J_{1}\left(\rho_{c}\sqrt{t}\right) Y_{1}\left(\rho_{c}\sqrt{t}\right) W\left(t,\hat{s},\tau\right) \, dt \\ &+ \exp\left\{ \left(-\frac{\hat{s}^{2}}{4\tau} \right) \right\} \left[\frac{1}{2\sqrt{\pi\tau}} \left\langle C_{4}^{\kappa} \mathcal{O}_{4}^{\kappa} \right\rangle - \frac{\hat{s}}{4\tau\sqrt{\pi\tau}} \left\langle C_{6}^{\kappa} \mathcal{O}_{6}^{\kappa} \right\rangle \right] \\ W\left(t,\hat{s},\tau\right) &= \frac{1}{\sqrt{4\pi\tau}} \exp\left\{ \left(-\frac{\left(t-\hat{s}\right)^{2}}{4\tau} \right) \right\}, \left\langle C_{4}^{s} \mathcal{O}_{4}^{\kappa} \right\rangle = \left\langle m_{s} \overline{q}q \right\rangle + \frac{1}{2} \left\langle m_{s} \overline{s}s \right\rangle + \frac{1}{8\pi} \left\langle \alpha_{s} G^{2} \right\rangle, \\ \left\langle C_{6}^{\kappa} \mathcal{O}_{6}^{\kappa} \right\rangle &= -\frac{1}{2} \left\langle m_{s} \overline{q}\sigma Gq \right\rangle - \frac{1}{2} \left\langle m_{q} \overline{s}\sigma Gs \right\rangle - \frac{16\pi}{27} \alpha_{s} \left(\left\langle \overline{q}q \right\rangle^{2} + \left\langle \overline{s}s \right\rangle^{2} \right) - \frac{48}{9} \alpha_{s} \left\langle \overline{q}q \right\rangle \left\langle \overline{s}s \right\rangle \end{split}$$

$$\begin{split} \mathcal{G}_{(\kappa)22}^{\text{QCD}}\left(\hat{s},\tau,s_{0}\right) &= \int_{0}^{s_{0}} dt \ W\left(t,\hat{s},\tau\right) \ \rho_{(\kappa)}^{\text{QCD}}(t) \,,\\ \rho_{(\kappa)}^{\text{QCD}}(t) &= \left(\frac{t^{4}}{11520\pi^{6}} - \frac{t^{3}m_{s}^{2}}{572\pi^{6}}\right) + t^{2} \left(\frac{\left(7 + 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle}{2304\pi^{5}} + \frac{\left\langle m_{s}\overline{s}s\right\rangle}{72\pi^{4}}\right) \\ &+ t \left(\frac{\left(-7 - 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle m_{s}^{2}}{768\pi^{5}} + \frac{\left\langle m_{s}\overline{q}\sigma Gq\right\rangle}{128\pi^{4}}\right) \\ &- \frac{\left\langle\alpha_{s}G^{2}\right\rangle\left\langle m_{s}\overline{q}q\right\rangle}{96\pi^{3}} + \frac{\left(7 + 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle\left\langle m_{s}\overline{s}s\right\rangle}{576\pi^{3}} - \frac{\left\langle\overline{q}\sigma Gq\right\rangle\left\langle\overline{s}s\right\rangle}{48\pi^{2}} + \frac{\left\langle\overline{q}q\right\rangle\left\langle\overline{s}\sigma Gs\right\rangle}{48\pi^{2}} \end{split}$$

Jason Ho

$$\begin{split} \mathcal{G}_{(a)11}^{\text{QCD}}\left(\hat{s},\tau,s_{0}\right) &= \frac{3}{8\pi^{2}} \int_{0}^{s_{0}} t \, dt \left[\left(1 + \frac{17}{3} \frac{\alpha_{s}}{\pi} \right) - 2 \frac{\alpha_{s}}{\pi} \log\left(\frac{t}{\sqrt{\tau}}\right) \right] W\left(t,\hat{s},\tau\right) \\ &+ \frac{3}{4\pi} \int_{0}^{s_{0}} t J_{1}\left(\rho_{c}\sqrt{t}\right) Y_{1}\left(\rho_{c}\sqrt{t}\right) W\left(t,\hat{s},\tau\right) \, dt \\ &+ \exp\left\{ \left(-\frac{\hat{s}^{2}}{4\tau} \right) \right\} \left[\frac{1}{2\sqrt{\pi\tau}} \left\langle C_{4}^{a}\mathcal{O}_{4}^{a} \right\rangle - \frac{\hat{s}}{4\tau\sqrt{\pi\tau}} \left\langle C_{6}^{a}\mathcal{O}_{6}^{a} \right\rangle \right] \\ &\left\langle C_{4}^{s}\mathcal{O}_{4}^{a} \right\rangle = 3 \left\langle m_{q}\overline{q}q \right\rangle + \frac{1}{8\pi} \left\langle \alpha_{s}G^{2} \right\rangle \,, \, \left\langle C_{6}^{a}\mathcal{O}_{6}^{a} \right\rangle = -\frac{172}{27} \alpha_{s} \left\langle \overline{q}q \right\rangle^{2} \,. \end{split}$$

Jason Ho

$$\begin{aligned} \mathcal{G}_{(a)22}^{\text{QCD}}\left(\hat{s},\tau,s_{0}\right) &= \int_{0}^{s_{0}} dt \, W\left(t,\hat{s},\tau\right) \, \rho_{(a)}^{\text{QCD}}(t) \,, \\ \rho_{(a)}^{\text{QCD}}(t) &= \frac{t^{4}}{11520\pi^{6}} - \frac{t^{3}m_{s}^{2}}{288\pi^{6}} + t^{2} \left(\frac{\left(7 + 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle}{2304\pi^{5}} + \frac{\left\langle m_{s}\overline{s}s\right\rangle}{36\pi^{4}} \right) \\ &+ t \left(\frac{\left(-7 - 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle m_{s}^{2}}{384\pi^{5}} - \frac{\left\langle m_{s}\overline{s}s\right\rangle m_{s}^{2}}{6\pi^{4}} \right) \\ &- \frac{\left\langle\alpha_{s}G^{2}\right\rangle\left\langle m_{s}\overline{q}q\right\rangle}{48\pi^{3}} + \frac{\left(7 + 6\sqrt{2}\right)\left\langle\alpha_{s}G^{2}\right\rangle\left\langle m_{s}\overline{s}s\right\rangle}{288\pi^{3}} + \frac{4\left\langle m_{s}\overline{q}q\right\rangle^{2}}{9\pi^{2}} + \frac{4\left\langle m_{s}\overline{s}s\right\rangle^{2}}{9\pi^{2}} \end{aligned}$$

Jason Ho